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The integrated densities of states (DOS) of one-, two-, and three-dimensional tight-binding models
with diagonal and off-diagonal disorder are calculated numerically. Our results for the diagonal-
disorder case confirm the expected universal behavior of the DOS, particularly near the band edges.
The simple exponential behavior of the DOS is clearly displayed in the three-dimensional results.
The off-diagonal-disorder case follows a universal behavior too, which agrees reasonably well with
the coherent-potential-approximation (CPA) results. Our results are compared with the various
phenomenological theories, with the CPA conclusions, and with previous numerical results.

I. INTRODUCTION

From the optical-absorption coefficient measurements
on crystalline and amorphous semiconductors and crys-
talline insulators, it has been deduced that the absorption
coefficient a often exhibits (over a limited range of ener-
gies) an exponential behavior of the form

Ina~(E —E;)/E, , (1.1)

known as the Urbach tail.! E r is the so-called Urbach
focus and E|, determines the slope of the curve of Ina
versus E =fiw; w is the photon frequency. The quantity
E, is of the order of 50 meV or less, the higher values ap-
pearing in amorphous materials.? Many theories have
been proposed®~!? to explain the rather general exponen-
tial behavior shown in Eq. (1.1). Most of them attribute
the frequency dependence of a to an exponential tail in
the density of states (DOS) in the top of the valence band
and/or the bottom of the conduction band. Various
physical mechanisms have been assumed and different
formalisms have been employed in order to obtain the ex-
ponential tail in the DOS. This proliferation of formal-
isms and detailed physical mechanisms tend to obscure
the common feature of a fluctuating potential being the
source of the exponential tails in the DOS.

Recently, Monroe and Kastner'! have demonstrated
through transient photocurrent measurements in glassy
As,Se, that the DOS appears to exhibit exponential tails
over a rather extended energy range from 0.3 to 0.86 eV
above the valence band.

The rather general character of the exponential tails in
the DOS suggests a quasiuniversal mechanism that by-
passes the complexity of real materials. In our quest'>'®
for uncovering such possible underlying quasiuniversali-
ty, we have reached the conclusions that the behavior of
the DOS (and other quantities of physical interest) near
the band edge depends on the following.

(i) The DOS py( E) corresponding to the periodic Ham-
iltonian Hy=(H ).

(ii) The standard deviation w? of the independent local
contributions €, to the fluctuating part of the Hamiltoni-
an H —(H).

(iii) The tail of the probability distribution p (g, ).

The last plays an important role in determining the tails
in the DOS. If many independent physical mechanisms
are responsible for the fluctuation of each €,, then one
expects that the distribution p (¢, ) will be Gaussian, i.e.,
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We have shown'® by second-order perturbation theory or
the coherent-potential approximation (CPA) that the
fluctuating local potentials will produce an almost rigid
shift of the “unperturbed” DOS py(E) by an amount
which is proportional to w2 Once the energies are mea-
sured relative to the CPA band edge, all the physical
quantities of interest, including the DOS, are universal,
provided that the length and energy are scaled relative to
disorder-dependent units of energy and length.'>!® This
universality holds for the Halperin-Lax (HL) regime* and
the regime close to the CPA band edge. Note that the
energy width of the HL regime in three dimensions is
very narrow, typically less than 50 meV. The universality
breaks down on the extended regime as the energy ap-
proaches the nearest Van Hove singularity inside the
band and on the localized regime when the localization
takes place by narrow deep potential fluctuations. This
regime is described well by elementary quantum-
mechanical considerations or by the CPA, and when cou-
pled with Gaussian disorder, it exhibits an exponential
behavior which is seen experimentally in the absorption
coefficient. The physical origin of the exponential behav-
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ior is the simple fact that the binding energy |E | in a
potential well is a linear function of ¢, i.e.,
| E | = A€+ B, where ¢ is the depth of the potential
well. This simple relation is valid in the regime where the
decay length of the bound state is comparable to the
linear extent of the potential well.'* Since the depth of
the potential well is assumed to have a Gaussian proba-
bility distribution p (g)~exp(—g?/2w?), it follows im-
mediately that the DOS will exhibit an exponential be-
havior

_1EL

3 (1.3)
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p(E)~exp

The energy width of this exponential behavior is much
wider than the HL regime, in accordance with experi-
ment.>!'" The exponential behavior could span more
than § orders of magnitude. Finally much deeper into
the tail we obtain, as we should, a gradual change of the
behavior of the DOS which approaches the same func-
tional form as the probability distribution for the disor-
der. This limiting behavior cannot easily be seen because
it is very deep into the tail. Similar results'® have been
obtained by a sophisticated and powerful formulation
which is based upon the replica field theory representa-
tion of the averaged one-electron Green's function.®'®
An asymptotically exact DOS may be obtained by
saddle-point evaluation of the relevant functional in-
tegral. The nontrivial saddle points'® (instantons) reveal
the nature of both the most probable potential fluctuation
and the corresponding bound-state wave function at any
fixed energy — | E |.

While the ideas vary, the implicit basic position is that
the exponential tail of p(E) should be explainable solely
on the basis of random potential fluctuations. Therefore,
it is very important to obtain numerically the true DOS
behavior in one-, two-, and three-dimensional (1D, 2D,
and 3D) disordered systems'®!” to check the universality
ideas, the widths of the HL and the simple exponential,
as well as the predictions of the CPA. In this work, we
have used the Sturm sequence method'® to calculate the
integrated DOS in 1D, 2D, and 3D tight-binding Hamil-
tonians with Gaussian distribution of site energies. We
have also studied the role of the off-diagonal disorder on
the behavior of the DOS in the tail region, and checked if
the universality obtained for the diagonal disorder is still
retained here.

In Sec. II, we briefly described the formalism and the
method of calculation. In Sec. III, we present and dis-
cuss the results of this calculation and in the final section,
we state the conclusions of this work.

II. THE THEORETICAL FRAMEWORK

We consider the tight-binding model with either diago-
nal or off-diagonal disorder,

H=S¢, | n)Xn|+ 3 V, |n)m |, 2.1

[n,m]

where the sites n form a regular lattice (square in two di-
mensions and simple cubic in three dimensions) of lattice
constant a. [n,m] denotes the nearest-neighbor pair and
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€, is the random site energy (diagonal disorder) which is
Gaussian distributed with mean zero and variance w?
and V,,, =V. The use of Gaussian distribution for ¢, is
based on the reasonable assumption, supported by experi-
ment,? that fluctuations of €, arise from many indepen-
dent physical mechanisms. For the pure off-diagonal-
disorder case, the matrix elements V,,, are random vari-
ables and €, constant. The logarithm of the V,,,, is given
by a rectangular probability of width W,. W, is a good
measure of the strength of the off-diagonal disorder. !°

For the case of the diagonal disorder, the CPA calcu-
lates the average (i.e., the arithmetic mean) Green’s func-
tion corresponding to H from an effective periodic Ham-
iltonian resulting from Eq. (2.1) by replacing each €, by a
common self-energy 2, which is determined by the fol-
lowing equation, 2°

EH
1—(e, —2)Gy(E -32) ’
where Gy(E) is the diagonal element of the unperturbed
Green’s function in which all the €,’s are the same. For
relatively weak disorder'? wG, << 1, one can expand Eq.
(2.2) to obtain

3=w?GyE —2)—Quw*—u,)G}E -32),

S(E)= [ de,ple,) (2.2)

(2.3)

where p,= fe‘,‘,p(e,, )de, is the fourth moment of the
distribution. For rectangular distribution 2w*—p,=w*/
5 and for the Gaussian case, 2w*—pu,=—w*. Equa-
tion (2.3), together with the expression of G,(E) near the
band edge was used successfully to obtain the quasi-
universal behavior of the DOS and the other quantities of
interest near the band edges, !> It is known that a reason-
able approximation to the DOS in the whole energy
range can be obtained by the CPA when supplemented by
the appropriate HL behavior outside the pure band
edge‘ 12,16

The off-diagonal-disorder case can be also treated by
the CPA. Most of the efforts?® obtained a solution to the
problem for the case of the binary distribution by intro-
ducing a 22 matrix version of the simple CPA equa-
tion. We have used the homomorphic cluster CPA
developed by Yonezawa and Odagaki®' to obtain the cor-
responding equation to Eq. (2.3) for the off-diagonal dis-
order. It has been shown?! that this cluster CPA pro-
duces analytical Green’s functions but is only right for
the case of pure off-diagonal disorder. Using the CPA
condition for a two-site cluster, we obtained, after some
algebra that (the details are given in the Appendix)

3'=wlGy(E'-3%'), 2.4)
where

E'=(14+w}/2d)E , (2.5a)

3 =(1+aE?/2d)2 , (2.5b)

w;=(1/a+E*/2dwj , (2.5¢)

and d is the space dimensionality, w, is defined in Eq.
(A9), and a=1/n where n is the number of nearest neigh-
bors. Notice that Eq. (2.4) is exactly the CPA equation
(2.3) to order w?. Hence, any results we have obtained
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for the diagonal-disorder case'? can be equally applied to
the off-diagonal disorder with the rescaling equation (2.5).
For the 1D tight-binding model with off-diagonal disor-
der, Mielke and Wegner?? have calculated in the limit of
weak disorder at the band edge the DOS and the localiza-
tion length. After rescaling their results with Eq. (2.5¢),
they obtained the universal behavior given for the
diagonal-disorder case by Derrida and Gardner.?®> This
behavior has been confirmed numerically both for the di-
agonal'>!” and off-diagonal case.?*

We have used the Sturm sequence method to calculate
the integrated DOS.?® The method consists of an appli-
cation of the Gaussian elimination trick on the consecu-
tive columns or rows of the matrix (E1—H) where E is
an energy and 1 a unit matrix of the same size as H. The
Gaussian elimination of the elements of the matrix is ap-
plied until the matrix is reduced to a triangular form.
The integrated DOS is then calculated by counting the
fractional number of positive elements in the diagonal of
the reduced triangular matrix.?® For details of how to
perform these calculations, see Refs. 25 and 26. The ad-
vantage of using this method is both economy in storage
and speed. The computing time rises as M¥4~-UxN
which allows us to consider very long strips of consider-
able width. It also does not require matrix inversion and
working with real numbers speeds up the calculation. In
our calculations, we have used systems as large as 1 107
for the 1D case, 50X4000 for the 2D case, and
10X 10400 and 2020 100 for the 3D case. The ac-
curacy of our calculations is very good, varying from 1%
close to the band edge to 10% in the deep tail.

III. RESULTS AND DISCUSSION

We show in Fig. 1(a) the integrated DOS [IDOS or
I(E)] for a 2D tight-binding model with diagonal disor-
der of Gaussian type with standard deviation w? for four
-values of w. Notice that the IDOS clearly displays an ex-
ponential behavior of the form exp(—E /E,), where E,
depends approximately linearly on the second power of
disorder. Following Eq. (1.3) we have that E,=2Aw>.
The value of A predicted analytically from the HL
theory*!> is 4 =1/(87)0.9311=0.0427 and, from the
path-integral formalism'® 4 =1/87=0.0398. We find
the following values for A4, 0.0427, 0.0625, 0.0694,
0.0571, and 0.0532, for values of disorder w =3, 2, 1, 0.5,
and 0.25, respectively. The values of A4 slightly depend
on disorder, but within 30% agree with the analytical re-
sults. We want to mention that the CPA will also give an
exponential behavior!'? for the IDOS. For the 2D square
lattice close to the band edge, we have that
1/G}(E)=4—11.66E, where E is measured from the un-
perturbed band edge of 4 in units of ¥ and Gy(E) is the
Green’s function for the periodic 2D tight-binding lattice.
Following Eq. (2.77 of Ref. 12, we obtain
p(E)~exp(—E/E,) and Ey=2 Aw?, where 4 =0.0857
which is roughly twice as large as the HL value and the
path-integral formalism predictions. In Fig. 1(b), we re-
plot the data that are presented in Fig. 1(a), but after a
scaling of the DOS and E that was suggested in Ref. 12
we have for the 2D system that
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FIG. 1. (a) Plot of the tail-integrated density of states I (E) as
a function of energy E for the 2D tight-binding model with
Gaussian diagonal disorder of strength w. (b) Plot of the 2D
scaled tail-integrated density of states J(E) as a function of the
scaled energy. I(E)=I(E)XL}, E=(E —Ecps)/cq,;, where
€ =w2/4wV, Loy =(4wV /w)a. The solid line is the universal
curve of Halperin-Lax theory (Refs. 4 and 12). The maximum
size of systems is 50 X 4000. :

p(E)=0.120E %%xp(—0.9311E) , 3.1
where p=p4nVa* and E =(E —Ep, )47V /w? and Epy
is the CPA band edge determined as the truncated CPA
equation (2.3). For the 2D case, we have that!®

1

2

27V

w
8sV2rV

Notice that all the different disorder cases fall into one
universal curve, which is a little higher than the integra-
tion of Eq. (3.1). In the 2D case, the HL theoty as well as
the CPA predict that the DOS will behave exponentially
and therefore the universality'? is easily observed. Only
for strong disorder w =3.0, there is a deviation from the
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FIG. 2. (a) Plot of the tail-integrated density of states I (E) as
a function of energy E for the 3D tight-binding model with
Gaussian diagonal disorder of strength w. (b) Plot of the 3D
scaled tail-integrated density of states I (E) as a function of the
scaled energy E. I(E)=I(E)XL3};, E=(E —Ecpa)/t0;, where
e3=w*/(8m) V3, Loz=(87V?/w?)a. The solid line is the
universal curve of Halperin-Lax theory (Refs. 4 and 12). The
maximum size of systems is 10X 10 X 3000.

universality.

In Fig. 2(a), we present four sets of 3D integrated
DOS’s calculated on a simple-cubic lattice with w =1,
1.5, 2, and 3. Notice that our numerical results provide
for the first time clear evidence in support of an exponen-
tial behavior exp(—E /E,) in agreement with the CPA
predictions'? and the path-integral formalism.'® The
value of A in the formula E,=24w? is given by
A =0.0417, 0.0476, 0.0403, and 0.0333 for w =3.0, 2.0,
1.5, and 1.0, respectively. There is again a disorder
dependence of A, but they qualitatively agree with the
predictions of the CPA (Ref. 12) that give a value of
A =0.06 predicted analytically on the basis of an asymp-
totic equation.!?> We have also numerically calculated'?
A within the CPA for the 3D tight-binding model with
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Gaussian disorder for a cubic lattice as well as for the
Hubbard model.®> The values of 4 range from 0.06 for
small w to 4 =0.04 for large disorder.'? It is clear from
our numerical results for three dimensions that the HL
region is much narrower than the exponential regime, in
accordance with experiment!! and the path-integral for-
malism. ' It was clearly shown in Ref. 10 that the range
of the exponential behavior of the DOS, which gives a
value of 4 =1(14.4)7=0.011 is much wider than the
HL regime.'* Numerical results for the 3D diagonal dis-
order were also presented by Zhang and Sheng.!” They
have used the recursion method!” to calculate the DOS,
which probably is not so accurate for the small-disorder
cases and deep into the tail. Around the CPA band edge,
which is the HL region, we have agreement between the
two methods, but deep into the tails, which supposedly
gives the exponential behavior, there is disagreement.
This is reflected in the fact that values of A that they are
getting are too small for all the disorders w less than 1.5
(i.e., A <0.01). Only for w=1.8, 4 =0.03. It is the in-
tegrated DOS that gives much more accurate results and,
therefore, we are able to check the exponential behavior
of the DOS. We replot in Fig. 2(b) the data from Fig. 2(a)
with the scaling of DOS and E suggested in Ref. 12. One
sees that the universality is obeyed only for small disor-
der and only close to the CPA band edge. To make this
point clear and also to show that the CPA correctly de-
scribes the behavior of the DOS in most of the regions of
interest, we replot the numerical data and the CPA re-
sults of Ref. 17 before they were scaled. This is shown in
Fig. 3. Notice that for w =1.2, 1.5, and 1.8, the numeri-
cal results and the CPA results agree reasonably well.
For small disorder, w =0.9, which is the worst case for
the CPA, we find, in fact, that the CPA misses some of
the states for E >6.20. There the CPA has to be supple-
mented by the HL behavior of DOS.*!? Notice from
Fig. 3 that the results of Ref. 17, if they are plotted

log,op(E)

FIG. 3. Plot of the density of states p or the 3D tight-binding
model with Gaussian diagonal disorder of strength w. Empty
symbols are CPA results and solid symbols are numerical re-
sults of the recursion method (data are taken from Fig. 3, Ref.
17).
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without any scaling, do not exaggerate the difference be-
tween the CPA calculation and the numerical results.
The same is also true for the 2D diagonal results of Ref.
17.

For completeness we also plot in Fig. 4(a) the results of
the IDOS versus E for the 1D diagonal-disordered case
with w =0.02, 0.2, 0.5, and 1.0. Notice in Fig. 4(b) that
all the diagonal-disorder results replotted with the ap-
propriate scaling of energy and DOS follow the universal
behavior predicted for one dimension.*!*?* The univer-
sality breaks down deep into the tail (E < —4.25) for
large enough disorder.

We have also calculated the IDOS for 2D and 3D
tight-binding disordered systems with only off-diagonal
disorder. Up to now, most of the numerical work as well
as the analytical work has been done for the diagonal
case. The off-diagonal-disorder case is very useful in de-
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FIG. 4. (a) Plot of the tail-integrated density of states I (E) as
a function of energy E for the 1D tight-binding model with
Gaussian diagonal disorder of strength w. (b) Plot of the 1D
scaled tail-integrated density of states I(E) as a function of the
scaled energy E for diagonal disorder, I(E)=I(E )X Loy
E=(E —2V)/ey;, where eg=w*>/V'3 Lo =(V?3/w??)a.
The solid line is the universal curve of Halperin-Lax theory
(Refs. 4 and 12). The maximum size of systems is 5 10°.
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ciding whether or not all of the universal features near
the band edges seen in the diagonal case will be also
present in this case too. It is also very interesting to
check if the DOS has a simple exponential behavior in
the presence of the off-diagonal disorder. We have taken
that the logarithm of the nearest-neighbor off-diagonal
matrix elements are randomly distributed with a rec-
tangular distribution of width W, The standard devia-
tion wy, for this probability distribution is proportional to
W,. We have used wi=({¥V2)—(V)?/(V)2 In Fig.
5(a), we plot the IDOS versus E for five values of the off-
diagonal-disorder W,=0.10, 0.25, 0.50, 1.0, and 2.0.
Notice that in this case the IDOS does not give a clear
exponential behavior as it did for the diagonal case.
However, if we assume E,=2 Aw?, the IDOS is propor-
tional to exp(—E/E,) and by doing the rescaling [Eq.
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FIG. 5. (a) Plot of the tail-integrated density of states I (E) as
a function of energy E for 2D pure off-diagonal disorder of
strength W,. (b) Plot of the scaled tail-integrated density of
states I(E) as a function of scaled energy E for 2D pure off-
diagonal disorder. I(E)=I(E)XL¢, E=(E'—Ecpa)/e0s
where ey, =w?/4wV, Ly, =(4wV /w,)a and E’,w, are defined in
Egs. (2.5a)-(2.5¢). The solid line is the universal curve of
Halperin-Lax theory (Refs. 4 and 12). The maximum size of
systems is 50 < 6000.
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(2.5¢)], the results for the off-diagonal case must agree
with those of the diagonal case. For the 2D off-diagonal
case, we have the effective standard deviation w2=8w}.
We have from our numerical results that 4 =0.022,
0.042, 0.047, 0.065, and 0.094 for W,=2.0, 1.0, 0.5, 0.25,
and 0.10. Notice that the values of 4 agree reasonably
well with that obtained for the diagonal case discussed
above. In Fig. 5(b), we replot our numerical data, shown
in Fig. 5(a) by doing the appropriate scaling of DOS and
energy suggested in Ref. 12, as well as the scaling [Eq.
(2.5¢)] for the effective standard deviation w,, and [Eq.
(2.5a)] for the energy. Notice that all different off-
diagonal-disorder cases fall into a universal curve, which
again is a little higher than the integration of Eq. (3.1).
From these analysis, we conclude that the off-diagonal-
disorder case is very similar to the diagonal case if we do
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FIG. 6. (a) Plot of the tail-integrated density of states I (E) as
a function of energy E for 3D pure off-diagonal disorder of
strength W,. (b) Plot of the scaled tail-integrated density of
states I(E) as a function of the scaled energy E for 3D pure off-
diagonal disorder. I(E)=I(E)XLg, E=(E'—Ecps)/tbs,
where eg;=w}/(87)*V?, Ly =(87V?/wl)a, and E',w, are
defined in Eqgs. (2.5a)-(2.5¢c). The solid line is the universal
curve of Halperin-Lax theory (Refs. 4 and 12). The maximum
size of systems is 20X 20X 150.

QIMING LI, C. M. SOUKOULIS, AND E. N. ECONOMOU 37

the scaling shown in Egs. (2.5a)-(2.5¢) for the energy E,
the self-energy X, and the standard deviation w,. Of
course, these findings are only correct to the w? order
within the CPA and expected to break down when the
off-diagonal disorder w,, becomes large.

In Fig. 6(a), we plot the results for the 3D tight-binding
model with only off-diagonal disorder for values of
W,=2.0, 1.5, 1.0, and 0.5. As in the 2D off-diagonal
case the 3D IDOS versus E does not exactly behave as a
simple exponential. It looks like the IDOS versus E
drops faster than the exponential. However, if we assume
that the IDOS is proportional to exp(—E/E,) with
E,=2 Aw? and by doing the rescaling [Eq. (2.5¢)], the re-
sults for the off-diagonal case must agree with those of
the diagonal case. For the 3D off-diagonal-disorder case,
we have the effective standard deviation w?=12w?. We
have from our numerical results 4 =0.016, 0.017, 0.01,
and 0.033 for W,=2.0, 1.5, 1.0, and 0.5. The values of 4
agree reasonably well with those obtained for the diago-
nal case. Of course in this case too, the value of 4 de-
pends on a disorder which suggests the assumption that
IDOS is proportional to exp(—E /E,) is not completely
correct.

In Fig. 6(b), we replot the results shown in Fig. 6(a) by
doing the appropriate scaling of DOS and energy suggest-
ed in Refs. 12 and 17. To connect the off-diagonal results
with the diagonal we have to also scale the energy by Eq.
(2.5a) and the standard deviation by Eq. (2.5¢). Notice
that all the different off-diagonal-disorder results fall into
a universal curve. We might say that the 3D off-diagonal
results follow the universal behavior better than the re-
sults for the 3D diagonal case. The exponential behavior
of the IDOS for the 3D off-diagonal case is not well es-
tablished from our data.

For completeness and a check of our numerical
method, we also calculated the IDOS for the 1D off-
diagonal-disordered system with W;=0.02, 0.2, 0.5, 1.0,
and 2.0. These results are shown in Fig. 7(a). Notice
that, as expected for the 1D case, the IDOS versus E does
not follow a simple exponential. However, by the ap-
propriate scaling of energy and DOS, as well as the scal-
ing in Eq. (2.5), we obtain that all the data follow a
universal curve. This is clearly shown in Fig. 7(b), where
the solid line is the HL universal prediction for the 1D
case and almost all the data for small disorder W, follow
this line. Of course, if disorder is large enough, we start
having deviations from the universality as one gets into
the far tail of the IDOS. Similar results were obtained in
Refs. 22 and 24 for very small disorders.

IV. CONCLUSIONS

We have performed detailed numerical results for the
IDOS for 1D, 2D, and 3D tight-binding models with only
diagonal or only off-diagonal disorder. We have clearly
demonstrated that our numerical results follow the
universal behavior suggested in Ref. 12 after a suitable
scaling of the DOS and energy. For the 3D diagonal
case, the universality is only obeyed in a small region
around the CPA band edge and breaks down for strong
disorder. The 3D diagonal-disorder results show clearly
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FIG. 7. (a) Plot of the tail-integrated density of states I (E) as
a function of energy E for the 1D tight-binding model with pure
off-diagonal disorder of strength W,. (b) Plot of the 1D scaled
tail-integrated density of states I(E) as a function of the scaled
energy E for pure off-diagonal disorder, I(E)=I(E)XLg,
E=(E'-2V) /ey, where eg=wl/V'"?, Lo =V /w2)a,
and E’,w, are defined in Egs. (2.5a)-(2.5c). The solid line is the
universal curve of Halperin-Lax theory (Refs. 4 and 12). The
maximum size of systems is 5 10°.

that the behavior of the DOS is a simple exponential as a
function of energy. The slope E, of that exponential is
proportional to the square of the standard deviation of
the diagonal disorder, in agreement with the CPA and
path-integral—formalism predictions. For the off-
diagonal case, we, for the first time, within the formula-
tion of homomorphic cluster CPA, write down the CPA
equations (the details are given in the Appendix). The
main conclusion of our analytic CPA results is that to
second order in w,, i.e., weak off-diagonal disorder, the
CPA equations for off-diagonal disorder in any dimension
look similar to those of the diagonal-disorder case. Then
by the appropriate scaling given in Egs. (2.5a)-(2.5¢), all
the analytical results for the diagonal-disorder case can
be also used for the off-diagonal case. We have numeri-
cally checked these ideas and given excellent results for
the 1D case in agreement with previous studies.??>* For
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the 2D and 3D off-diagonal-disorder cases, we obtain re-
sults that follow the universality suggested in Ref. 12.
From our numerical results for the 3D off-diagonal case,
it is difficult to draw the conclusion that the DOS versus
E behaves as a simple exponential. However, for the 3D
diagonal case, the exponential behavior of the DOS is
clearly demonstrated. In conclusion, we have demon-
strated both analytically and numerically the general va-
lidity of the universal behavior particularly near band
edges. For D > 1, universality remains after a nonuniver-
sal shift of the unperturbed band edge. We also demon-
strated that a reasonable understanding of the behavior
of the DOS of weakly disordered systems with diagonal
or off-diagonal disorder in any dimension can be achieved
by the coherent potential approximation.
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APPENDIX

The homomorphic cluster coherent-potential approxi-
mation (HCPA) condition for a two-site cluster is ex-
pressed by a matrix equation as

(TY=(v(1—gv)"")=0, (A1)
where
ale;—2) V,—Vs
U=, —Vs ale,—3) | (A2)
811 8&n
&= 821 &n (A3)

1/a=n is the number of the nearest neighbor. The
effective Green’s function is defined as

8;(Z)=Ci |[(ZI —H )| j)

V_ o

|4
= 5.8 |5, 22|, (A4)

where g,-‘])- is the unperturbed Green’s function with
transfer energy ¥V =(V,) and Z=E +iS, and the
effective Hamiltonian H 4 is given as

Heﬁ=22|i)<i|+Vz|i)(i+l|+V2li+1)(i| .

(AS)
€, and ¢, are random-site energies (diagonal disorder)
and V), is the random transfer energy (off-diagonal disor-
der). The coherent potential £ and the coherent transfer
energy Vs are determined by condition (A 1).
For pure off-diagonal disorder, we take £; =0 for sim-
plicity, and Eq. (A1) becomes
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—a2—[a222—( Via—Vs )2]811
(Vi —Vs)+[a?Z?—( Via—Vs)Plgy,

<T)=<%

where
CEI+22gll ‘“2( V‘2°‘ VZ )glz
+(g} —gh)a?22—(V, — V5 )] (A7)

using g, =8, and g, =g,;; Eq. (A6) can also be written
as two equations:

1
<—{ —aZ—[a®3*—(V ), —Vs)lg ]):0 )

C (A8a)

<%fV12—V2+[a222"(Vlz—Vz)Z]&z}):O - (A8b)

For weak disorder, we anticipate = ~wiV and Vs

(Via—Vs)+[a?Z2—(V,, — V5 )lgy,
—a3—[a?32—(V,— V5 ) len
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(A6)

)

represents the strength of the off-diagonal disorder.
Keeping the leading terms in w3, Eqs. (A8a) and (A8b)
become

a=wiVqg, , (A10a)

Vs—V=wiVyg, . (A 10b)

Furthermore, for a regular lattice (square in two dimen-
sions, simple cubic in three dimensions, and simple hy-
percubic in general) the relation

0o _ 0
—V ~w}V, where 2dVgy, =—1+2g5, (A11)
, (Vp=v)?)
woz-“——l-/z— (A9) holds. Hence, from Egs. (A10a) and (A 10b),
J
Vs—V v |4
v =Vw0g12=Vw(2)7;g?2 —V—E—(Z—E)
vV 1 Z-= V
=V AN . o {_r
WOy 1 T 2av T 2av; 81 | s
_szl 1 +Z—2 aZ
T | 2dV T 24V wlvt.
2
Wo VD> 4
~——4+=—=0a3 .
2d+ 2d +O0(wy) (A12)
Substituting Eq. (A12) into Eq. (A10a) and keeping only the leading term, w3, we have
Vs Vs
vV
=w(2,V2—I—/~g?, (Z—3)—(Z—3) |—=—1|+0(w})
21,20 w(Z) Zza 4
=wyVegih\Z 1+E — |1+ dV? 2 +0(wy) . (A13)
[
Now let us define ) 72 172
w,=|—+ Wy ; (Al4c)
VA 1 w5 VA (Al4a) « v °
= + 2d ’ a
2
5= |14+ 2 =z, (A14b) , .
2dV then, the HCPA equation (A13) can be written as
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S =w2gl(z'-3") . (A15)
This is exactly the one-site CPA condition for diagonal
disorder up to O (w*). Therefore, a relation between the
off-diagonal disorder HCPA and diagonal CPA is estab-
lished up to O(w*). Explicitly, around the band edge
z =%12dV,

w, =2Vdw,
2w, for one dimension ,
= {V'8w, for two dimensions , (A16)

V12w, for three dimensions ,

where in Eq. (A15) 1/a=n =2d is used.
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